Subsidence of normal oceanic lithosphere, apparent thermal expansivity, and seafloor flattening

Tomoko Korenaga, Jun Korenaga *

Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109, USA

Received 20 November 2006; received in revised form 5 September 2007; accepted 24 December 2007

Abstract

Seafloor topography has been a key observational constraint on the thermal evolution of oceanic lithosphere, which is the top boundary layer of convection in Earth’s mantle. At least for the first ~70 Myr, the age progression of seafloor depth is known to follow the prediction of half-space cooling, and the subsidence rate is commonly believed to be ~350 m Ma$^{-1/2}$. Here we show that, based on a new statistical analysis of global bathymetry, the average subsidence rate of normal oceanic lithosphere is likely to be ~320 m Ma$^{-1/2}$, i.e., ~10% lower than the conventional value. We define the ‘normal’ seafloor as regions uncorrelated with anomalous crust such as hotspots and oceanic plateaus, but the lower subsidence rate appears to be a stable estimate, not depending on how exactly we define the normal seafloor. This low subsidence rate can still be explained by half-space cooling with realistic mantle properties, if the effective thermal expansivity of a viscoelastic mantle is taken into account. In light of a revised model of half-space cooling, the normal seafloor unperturbed by the emplacement of anomalous crust exists for all ages, and the so-called seafloor flattening seems to be mostly caused by hotspots and oceanic plateaus.

Keywords: mantle convection; depth anomalies; thermal cracking

1. Introduction

Hot suboceanic mantle beneath mid-ocean ridges is gradually cooled from above as it moves laterally by plate motion. Because the thermal diffusivity of mantle rocks is $\sim 10^{-6}$ m2 s$^{-1}$ and seafloor is younger than 200 Ma, the vertical extent of thermal diffusion is on the order of 100 km. As this length scale is considerably shorter than the depth extent of Earth’s mantle (~3000 km), it is reasonable to expect that the surface cooling of suboceanic mantle can be approximated as the cooling of a semi-infinite medium or half-space cooling, and indeed, the observed age–depth relationship of seafloor supports this simple cooling model, at least for seafloor younger than ~70 Ma. The interpretation of the age–depth relationship for older seafloor has been controversial (see Section 4.2 for discussion), and our primary analysis will focus on the characteristics of seafloor younger than 70 Ma. This part of seafloor is commonly regarded to be well understood, with the subsidence rate of ~350 m Ma$^{-1/2}$ (Parsons and Sclater, 1977; Stein and Stein, 1992; Carlson and Johnson, 1994; Smith and Sandwell, 1997), but as shown in this paper, the conventional understanding does not seem to properly represent the global characteristics of young seafloor. Along with heat flow, seafloor depth (Fig. 1a) has been a key observational constraint on the thermal evolution of oceanic lithosphere (Parsons and Sclater, 1977; Stein and Stein, 1992), so it is important to establish a representation that is more faithful to actual data. A better understanding of the younger part of seafloor has an important bearing on the interpretation of the older part as well.

The main purpose of this paper is to construct a statistical description for the subsidence of seafloor younger than 70 Ma, and in particular, normal seafloor unperturbed by the emplacement of anomalous crust such as hotspot islands and oceanic plateaus. This task is not so straightforward because there is no consensus in the literature on how to define the ‘normal’ seafloor. In this paper, therefore, we introduce a new statistical
approach based solely on the seafloor topography. As will be shown, a simple but hitherto overlooked spatial correlation allows us to delineate the extent of unperturbed seafloor. By combining with the bootstrap resampling method, then, we will construct a statistical representation for the thermal subsidence of the normal seafloor. Though some degrees of nonuniqueness still remain, we will show that the subsidence of the normal seafloor is only marginally comparable with the conventional wisdom; our analysis indicates that the global subsidence rate is more likely to be ~320 m Ma^{-1/2}. Finally, we will discuss the implications of this revised rate for the evolution of oceanic lithosphere, including its behavior at ages older than 70 Ma.

2. Statistical representation of age–depth relationship

We first stress that, as a number of seismic studies demonstrate (White et al., 1992), there clearly exist anomalous crustal regions in various places of ocean basins, and we must exclude them a priori if our goal is to understand the evolution of normal oceanic lithosphere. Due to isostasy, regions with anomalously thick crust usually appear as pronounced topographic highs. Fig. 1b shows residual bathymetry using the plate model of Stein and Stein (1992) as a reference, and it can be seen that regions with residual depth anomaly greater than 1 km (shown by yellow) are mostly associated with known hotspots and plateaus (Coffin and Eldholm, 2002).
This motivated us to identify the anomalous crustal regions using residual bathymetry; crustal seismic experiments are far from covering all ocean basins. In order to eliminate isolated seamounts and limit ourselves to well-known hotspot chains and oceanic plateaus, we applied a Gaussian filter of 150 km diameter to residual bathymetry and define regions still characterized by >1 km anomaly as "anomalous crust".

The age–depth relationship for all seafloor (with known age) excluding the anomalous crust is given in Fig. 2a. Half-space cooling predicts that depth is linearly proportional to \sqrt{t} (Turcotte and Schubert, 1982), where t is the age of seafloor, and it is reasonable to assume this cooling model for seafloor younger than ~70 Ma. The older seafloor tends to deviate to shallower depths, and this phenomenon is often called as seafloor flattening. In any

Fig. 2. (a) Age–depth relation for all seafloor with known age and sediment thickness but excluding the anomalous crust as defined in the text. Regions with sediments thicker than 2 km (light gray region in Fig. 1b) are also excluded because of unreliable sediment correction. Solid curves denote the depth interval corresponding to one standard deviation, and dotted line is drawn at 70 Ma. (b) Same as (a) but for the North Pacific (140°E–100°W and 0°–60°N) and the western North Atlantic (80°W–40°W and 15°N–45°N). These are the same regions considered by Stein and Stein (1992, 1993). Dashed curves are the depth interval reported by Stein and Stein (1993) on the basis of older age–depth data (Sclater and Wixon, 1986; Renkin and Sclater, 1988). (c) Joint distribution of zero-age depth and subsidence rate, based on the bootstrap resampling from the age–depth relation of (a). The error ellipse is drawn for the 68% confidence zone. (d) Distribution of RMS residual of linear regression as a function of the subsidence rate. (e) Same as (d) but as a function of the zero-age depth. (f) Comparison of the estimated subsidence parameters with previous studies (PS77, Parsons and Sclater, 1977, SS92, Stein and Stein, 1992, and CJ94, Carlson and Johnson, 1994). Error ellipses (68% confidence zone) are shown for the global case (solid, based on (a)) and two regional cases (dashed, based on (b), and dotted, based on Stein and Stein (1993)).
case, the following statistical model may be sufficient for seafloor younger than 70 Ma:
\[d(t) = d_0 + b \sqrt{t} + \epsilon, \]
where \(d(t) \) is the seafloor depth at the age of \(t \), \(d_0 \) is the zero-age depth, \(b \) is the subsidence rate, and \(\epsilon \) denotes the prediction error. Note that \(d_0, b, \) and \(\epsilon \) are all random variables. The zero-age depth and subsidence rate can only be known with some uncertainty. The error term \(\epsilon \) is essential because half-space cooling predicts only one depth for a given age and by itself cannot account for the observed depth distribution, which is on the order of \(\pm 400 \) m. The thickness of normal oceanic crust has a standard deviation of \(\pm 1 \) km (White et al., 1992), which alone results in \(\pm 200 \) m depth variation, and the rest of variability may be caused by dynamic topography due to mantle convection of various spatial scales \(\sim 1 \) km (White et al., 1992), so we can also expect temporal variations with a similar magnitude beneath a particular ridge segment. A tectonic corridor characterized by a low subsidence rate, for example, may be caused by a gradual transition from a hotter ridge segment in the past to a colder one in the present. Note that it is impossible to distinguish between spatial and temporal variations in the present-day seafloor data because temporal variations are mapped into spatial variations. Random resampling from the global data can properly map these regional fluctuations into the uncertainty of the average subsidence behavior without being trapped by them.

Though our estimate of the global subsidence rate is characterized by a relatively large uncertainty \((\sim 20 – 40 \text{ m Ma}^{-1/2}) \), its mean value \((\sim 315 \text{ m Ma}^{-1/2}) \) is still notably lower than the conventional rate of \(\sim 350 \text{ m Ma}^{-1/2} \), and this discrepancy demands an explanation. First of all, we note that the classic studies of Parsons and Sclater (1977) and Stein and Stein (1992) are not based on global data; their analyses are based on age–depth data from the North Pacific and the western North Atlantic. The age–depth data for these regions are plotted in Fig. 2b, which exhibit a somewhat more restricted distribution. We repeated the bootstrap resampling with this distribution, and obtained that \(d_0 = 2760 \pm 130 \) m and \(b = 317 \pm 21 \text{ m Ma}^{-1/2} \) with the correlation coefficient of \(0.94 \) (Fig. 2f). Thus, the low subsidence rate does not seem to be simply due to regional variations. A closer look indicates that the different vintages of age–depth data may be a source of discrepancy. The analysis of Stein and Stein (1992, 1993) (and also of Carlson and Johnson (1994)) is based on older age–depth data (Sclater and Wixon (1986) for the western North Atlantic and Renkin and Sclater (1988) for the North Pacific), and Fig. 2 shows that these data sets have too narrow depth distribution for seafloor younger than \(\sim 10 \) Ma. The bootstrap resampling with this distribution results in \(d_0 = 2640 \pm 95 \) m and \(b = 337 \pm 16 \text{ m Ma}^{-1/2} \) with the correlation coefficient of \(0.94 \), which is more comparable with the conventional estimates (Fig. 2f). Fig. 2b suggests that the subsidence rate of \(\sim 350 \text{ m Ma}^{-1/2} \) would be consistent with this older and regional age–depth data, which is slightly biased to shallow depths at young ages, but the global data do not support such age–depth distribution (Fig. 2a).

However, one may wonder whether the global age–depth distribution (Fig. 2a) is too broad or blurred, which may result in the low subsidence rate. This criticism may be adequate because we excluded only the most prominent topographic highs (defined as the anomalous crust), and this filtering does not guarantee that the rest of seafloor can be considered as ‘normal’ (although we should note that the age-depth distribution of Stein and Stein (1993), which was used by Stein and Stein (1992) and Carlson and Johnson (1994), does not involve any filtering effort). In fact, how to define the normal seafloor has been a tricky subject. In the next section, therefore, we first discuss this issue and then revisit the age–depth relationship.
3. New age–depth relationship for the normal seafloor

How to define the normal seafloor, i.e., the unperturbed seafloor not affected by hotspots and plateaus, has been ambiguous in the literature. Some previous studies (Parsons and Sclater, 1977; Renkin and Sclater, 1988; Stein and Stein, 1992) did not even exclude such anomalous crust when estimating a reference cooling model. Schroeder (1984), on the other hand, showed that seafloor subsidence in the Pacific follows simple half-space cooling, if seafloor within 600 km from known hotspot tracks is excluded, and based on this, Davies (1988) questioned the significance of seafloor flattening. With this aggressive filtering, however, the normal seafloor is almost nonexistent for ages greater than 80 Ma. This filtering may also be regarded as arbitrary because how far hotspots could actually influence the surrounding seafloor is not well understood. Recently, Hillier and Watts (2005) developed a filtering technique to remove bathymetric anomalies from ship track data, but their implementation appears to be a mere automation of visual inspection. In another recent study, Crosby et al. (2006) first masked out hotspot chains and plateaus by eye and then defined regions with nearly zero gravity anomalies as unperturbed seafloor. Though the use of correlation between topography and gravity may be appealing, it is not particularly suited to distinguish unperturbed regions because buoyancy perturbations to lithosphere from below are fundamentally

![Fig. 3. (a) Distance from anomalous regions (b) Correlation between distance and residual depth](image-url)
biased to be positive. To claim a region with zero gravity anomaly as unperturbed, symmetrical density perturbations are implicitly assumed, but it is unlikely. There is no cold (and thus denser-than-surrounding) plume rising in the mantle, so it is hard to imagine a mechanism to add negative buoyancy to normal lithosphere from below. What has been frustrating is that currently available geophysical data do not have sufficient resolution to map out the spatial extent of the unperturbed seafloor on the basis of subsurface structure.

We suggest that a new statistical approach, requiring only the seafloor topography, may add a fresh perspective to the continuing debate on the definition of the normal seafloor. We previously defined the anomalous crust as the regions with residual bathymetry greater than 1 km, because such regions correspond reasonably well to known hotspots and plateaus (Fig. 1b). What we also see is that remaining positive depth anomalies (red) are almost always located near anomalous crust (yellow). This indicates that the anomalous crust does not exist without affecting the surrounding seafloor, so we have to consider a part of the surrounding seafloor as perturbed by the emplacement of anomalous crust. Such spatial connection can be understood as, for example, a result of thermal and chemical buoyancy associated with mantle plumes (Ribe and Christensen, 1994; Phipps Morgan et al., 1995). In addition to creating hotspot islands by melting, a mantle plume can thermally and mechanically erode the base of the lithosphere, and a chemically buoyant depleted mantle after melt extraction may also spread beneath the lithosphere. It is thus natural to expect that the seafloor surrounding hotspot islands is affected by such sublithospheric dynamics. Unfortunately, how widely such dynamics would affect the surrounding seafloor depends on a number of poorly constrained parameters including the radius of a plume and its ascent velocity, plume temperature, the chemical composition of plume material, the degree of melting, and the viscosities of asthenosphere and depleted mantle, so theoretically predicting the radius of plume influence is difficult. Strong spatial correlation as depicted by Fig. 1b, however, suggests that the spatial extent of perturbed seafloor may be constrained on a purely statistical ground. Note that the predicted topography of Smith and Sandwell (1997) is partly based on gravity, but because the method we will propose below do not rely on the correlation between gravity and topography, its use does not lead to any circular argument. A comparison among different versions of predicted topography indicates that its long wavelength features are robust (Calmant et al., 2002). The use of predicted topography, which is constrained by shipboard soundings, is unlikely to introduce any major bias, and it only facilitates our global analysis.

The spatial association between anomalous crust and surrounding seafloor can be quantified by calculating how residual depth anomaly changes as we move away from anomalous crust. To this end, we first need to assign a distance to the nearest anomalous crust for all points in the surrounding seafloor (we used 5 minute by 5 minute grid resolution throughout our analysis), for which we used the graph-theoretical (shortest-path) method (Moser, 1991) (Fig. 3a). Using this distance map, we then calculated correlation between distance and (unfiltered) residual depth. When the presence of anomalous crust appears to raise a part of surrounding seafloor, such perturbed seafloor should be characterized by negative correlation. That is, as we move away from the anomalous crust, residual bathymetry decreases. For each grid point in the surrounding seafloor, correlation is calculated by least-squares using all points (excluding anomalous crust) that fall in a given search radius. We have tested different search radii ranging from 50 km to 150 km, with virtually no difference in long-wavelength patterns. A case of 100 km search radius is shown in Fig. 3b. We note that, because this correlation is sensitive only to regional gradients in bathymetry, it hardly depends on a particular choice of a reference cooling model used to define residual bathymetry.

The aerial distribution of this correlation is summarized as a function of distance to the nearest anomalous crust (Fig. 4a) and as a function of residual depth (Fig. 4b). As Fig. 4a indicates, the influence of anomalous crust generally diminishes at distance of

![Fig. 4](image_url)

(a) Areal distribution of correlation as a function of distance to the nearest anomalous crust. Darker shading denotes larger area. Our estimate for background noise level (±1 m km\(^{-1}\)) is denoted by dotted lines. Dashed line is drawn at the distance of 300 km, which we use in the distance criterion for the normal seafloor. (b) Same as (a) but as a function of residual depth.
~300 km, and background noise level for correlation is about \(\pm 1 \text{ m km}^{-1} \). Based on this observation, seafloor with correlation larger than \(-1 \text{ m km}^{-1} \) may be regarded as unperturbed by the formation of anomalous crust. For comparison, we may simply choose to accept seafloor located more than 300 km away from the anomalous crust. We refer to the former as the correlation criterion and the latter as the distance criterion. The correlation criterion allows us to remove perturbed seafloor using variable distance to anomalous crust with some confidence. Fig. 4 shows that regions with positive residual depth are biased to have negative correlation. This confirms our visual impression for Fig. 1b, that is, positive depth anomalies are mostly found in the vicinity of anomalous crust.

The age–depth relationship for the normal seafloor is shown in Fig. 5a for the correlation criterion and in Fig. 5b for the distance criterion. As in the previous section, we use the seafloor with ages younger than 70 Ma to estimate the subsidence parameters, with the results of \(d_0 = 2654 \pm 137 \text{ m} \) and \(b = 323 \pm 23 \text{ m Ma}^{-1/2} \) for the former (Fig. 5c) and \(d_0 = 2648 \pm 130 \text{ m} \) and \(b = 336 \pm 22 \text{ m Ma}^{-1/2} \) for the latter (Fig. 5d). For both cases, the correlation coefficient is around \(-0.94\) and the standard deviation of prediction error is \(\sim 350–380 \text{ m} \). Even with these aggressive filtering, therefore, the average subsidence rate still seems to be systematically lower than 350 m Ma\(^{-1/2}\) (Fig. 6). We note that a similar conclusion was previously obtained by Heestrand and Crough (1981) (for the North Atlantic, \(b = 295 \text{ m Ma}^{-1/2} \) with the distance criterion of \(>1000 \text{ km} \)) and Schroeder (1984) (for Pacific, \(b = 314 \text{ m Ma}^{-1/2} \) with the distance criterion of \(>800 \text{ km} \)). Though regional subsidence rates are known to exhibit substantial scatters (Marty and Cazenave, 1989) (Fig. 6), these earlier studies may cover sufficient area to approach the global average.

4. Discussion

4.1. Physical meaning of the low subsidence rate

Assuming half-space cooling with constant material properties, the subsidence rate may be expressed as (Turcotte and Schubert, 1982):

\[
b = \frac{2\pi \rho_m A T \sqrt{\kappa/\pi}}{\rho_m - \rho_w},
\]
where α is volumetric thermal expansivity, ΔT is the difference between the surface temperature and the initial mantle temperature, κ is thermal diffusivity, ρ_m is mantle density, and ρ_w is water density. By using commonly used values, $\alpha = 3 \times 10^{-5} \text{K}^{-1}$, $\Delta T = 1350 \text{K}$, $\kappa = 10^{-6} \text{m}^2 \text{s}^{-1}$, $\rho_m = 3300 \text{kg m}^{-3}$, and $\rho_w = 1000 \text{kg m}^{-3}$, we obtain $\delta \sim 370 \text{m Ma}^{-1/2}$.

Some of mantle properties are, however, known to be strongly temperature-dependent, and the above relation is only an approximation. In order to obtain a more precise prediction for the subsidence rate, we need to solve the following equation of heat conduction:

$$
\rho(T) C_P(T) \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(k(T) \frac{\partial T}{\partial z} \right),
$$

where C_P and k denote specific heat and thermal conductivity, respectively. The temperature-dependency of density is controlled by thermal expansivity as

$$
\rho(T) = \rho_0 \exp \left(- \int_{T_0}^{T} \alpha(T')dT' \right),
$$

where ρ_0 is reference density at $T = T_0$. Pressure dependence is not important for lithospheric depth scales (Doin and Fleitout, 1996), so it is ignored here. Temperature effects are significant; for a temperature variation expected within lithosphere ($\sim 1300 \text{K}$), α increases by $\sim 30\%$ (Bouhifd et al., 1996), C_P increases by $\sim 60\%$ (Berman and Aranovich, 1996), and k decreases by $\sim 50\%$ (Hofmeister, 1999). This equation was solved numerically with finite-difference approximation, for a uniformly hot mantle ($T = 1623 \text{K}$) at $t = 0$ subject to instantaneous cooling with the surface temperature of 273 K. We limit the depth extent of our computation to 300 km. Seafloor subsidence can then be calculated by

$$
w(t) = \frac{1}{\rho_i - \rho_w} \left\{ \int_0^T \left[\rho(T(0,z)) - \rho(T(t,z)) \right] dz \right\},
$$

where ρ_i is the average density of the initial mantle column. Even with the variable material properties, seafloor subsidence still follows closely the \sqrt{t} behavior, with the rate of $\sim 345 \text{ m Ma}^{-1/2}$. Surface heat flow can be calculated as $q(t) = k\partial T(t, z)/\partial z|_{z=0}$, and the numerical solution is best approximated by $q = 550/\sqrt{t}$ (cf. Lister, 1977), where q is in mW m$^{-2}$ and t in Ma.

Thus, the average subsidence rate of $\sim 320 \text{ m Ma}^{-1/2}$ seems to be a bit too low given the currently available mineral physics data, though it is still marginally comparable if uncertainty is taken into account (Fig. 6). One may attempt to explain the low subsidence rate by reducing ΔT, but then, the potential temperature of suboceanic mantle has to be reduced to 1250 °C, which is $\sim 100\text{K}$ lower than what the petrology of mid-ocean ridge basalts indicates for the average ambient mantle (Klein and Langmuir, 1987; Herzberg et al., 2007).

On the other hand, it is recently proposed that the effective thermal expansivity for lithosphere as a whole may be systematically lower than mineral physics data by $\sim 10-20\%$ (Korenaga, 2008).
The evolution of oceanic lithosphere is characterized by rapid cooling with a large temperature contrast, and because mantle viscosity is strongly temperature-dependent, oceanic lithosphere may not be able to attain complete thermal contraction, which requires efficient viscous relaxation. If the viscoelastic analysis of an evolving oceanic lithosphere (Korenaga, 2007a,b) is correct, therefore, the subsidence rate could be reduced by ~10–20%, which is comparable with what our global analysis suggests (Fig. 6). The reduced thermal expansivity, if real, has profound implications for the rheological structure of oceanic lithosphere as well as the generation of plate tectonics (Korenaga, 2007a,b).

4.2. The origin of seafloor ‘flattening’

Simple half-space cooling has traditionally been thought to be invalid for seafloor older than ~70–80 Ma. There are mainly two views for why half-space cooling is not applicable for older seafloor. Proponents for the plate model, which limits the growth of oceanic lithosphere by imposing a temperature boundary condition (Parsons and Sclater, 1977; Stein and Stein, 1992; McKenzie, 1967), claim that oceanic lithosphere has its intrinsic thickness, which may be regulated by convective instability, background heat supply, or some other undefined sources. Others suggest that seafloor flattening is a natural consequence of another well-known aging effect besides cooling (Smith and Sandwell, 1997; Schroeder, 1984; Davies, 1988; Heestand and Crough, 1981); seafloor topography is substantially affected by the formation of oceanic islands and plateaus, and older seafloor is more likely to have encountered these anomalous events.

Our global analysis may support the latter view. We estimated the subsidence parameters for the normal seafloor younger than 70 Ma by assuming half-space cooling, and its prediction for older ages is also shown in Fig. 5a,b. The uncertainty of zero-age depth and subsidence rate (i.e., 68% confidence zone) as well as one standard deviation of prediction error are taken into account when drawing the upper and lower bounds, so age–depth data falling within these bounds can be considered as consistent with half-space cooling. Thus, the normal seafloor following half-space cooling does exist for almost all ages, which may be seen more clearly in the area-age distribution (Fig. 7). This has been repeatedly suggested in the past (Martyn and Cazenave, 1989; Heestand and Crough, 1981), but tends to be overlooked probably due to the popularity of the plate model.

We note that data exceeding the upper bound also exist at older seafloor, so even if we filter out perturbed seafloor by the correlation criterion or by the distance criterion, the signal of seafloor flattening is still present. The significance of such signal is, however, uncertain. As previously mentioned, there is less seafloor at older ages because of subduction, and within the surviving seafloor, the fraction of the normal seafloor is expected to decrease with time, because older seafloor is more likely to be affected, either directly or indirectly, by the emplacement of anomalous crust. Both definitions of the perturbed seafloor are consistent in showing that the majority of the so-called seafloor flattening at old ages is caused by the emplacement of the anomalous crust, and the remaining flattening is supported by only a small fraction of global data (Fig. 7). Our screening criteria are unlikely to be perfect. The detail of the remaining signal is sensitive to how exactly we define the perturbed seafloor, and thus it appears as a second-order feature of global age–depth data, questioning the need for any global mechanism for seafloor ‘flattening’ (Parsons and McKenzie, 1978; Huang and Zhong, 2005; Davis, 1989; Humler et al., 1999).

Besides depth data, half-space cooling has sometimes been considered inadequate (Stein and Stein, 1992) because its prediction for heat flow may be seen as systematically lower than the observed (Fig. 8a). Heat flow data are considerably more scattered than depth data, and one may question if they can ever distinguish between different cooling models (Carlson and Johnson, 1994). Though we also think that heat flow data are not particularly diagnostic, we would like to point out that the heat flow prediction by half-space cooling is actually very similar to that by the plate model, if half-space cooling is...
modeled with realistic (i.e., temperature-dependent) mantle properties (Fig. 8b). Even if heat flow data are important as suggested by Stein and Stein (1992), therefore, the similarity between these two predictions casts a doubt on the need for the plate model.

4.3. Small-scale convection and the geoid

Our preceding discussion suggests that simple half-space cooling may be sufficient to explain the evolution of the normal seafloor, but this does not necessarily reject the notion of small-scale convection beneath oceanic lithosphere, which has frequently been discussed as a possible cause of seafloor flattening (Parsons and McKenzie, 1978; Huang and Zhong, 2005). Small-scale convection by itself, however, does not slow down seafloor subsidence (O’Connell and Hager, 1980) and hardly affects surface heat flow (Korenaga and Jordan, 2002). In general, the signal of sublithospheric convection is too subtle (if any) in surface observables. Recent surface-wave tomography of the Pacific mantle (Ritzwoller et al., 2004) suggests that old lithosphere does not follow half-space cooling, which may imply the operation of small-scale convection. As such old seafloor in the Pacific is so heavily populated with hotspot chains and plateaus (Fig. 1a,b), however, we probably cannot extract the evolution of normal lithosphere from their tomography given its spatial resolution. Although small-scale convection is unlikely to affect seafloor subsidence, its presence is still physically plausible according to our understanding of mantle rheology (Korenaga and Jordan, 2003). The most likely place for such convective instability would be beneath fracture zones because of lateral temperature gradient imposed by age difference (Huang et al., 2003), which would be efficiently removed once convection takes place. Weak geoid contrasts at fracture zones, sometimes interpreted to support the plate model (Richardson et al., 1995), may thus be due to small-scale convection and do not contradict with our notion that half-space cooling is sufficient for the normal seafloor at large.

Although the support for the plate model from local geoid anomalies may be disputed as above, a similar argument based on small-scale convection does not apply to the global geoid signal. Indeed, DeLaughter et al. (1999) claim that global correlation between age and geoid slope prefers the plate model, though the following two issues may undermine their argument. First, as the global geoid is dominated by long-wavelength signals from mantle convection, they filtered out the long-wavelength components and focused on the geoid slope in the remaining signal. As Hager (1983) demonstrated, however, isostatic geoid signals predicated from the half-space cooling model and the plate model differ only in long wavelengths. Thus, we do not expect to be able to discriminate between the two models using the filtered geoid. The geoid slope in the filtered data fluctuates around zero, indicating that it does not contain meaningful signals. Second, when they compare this near-zero geoid-slope observation with model predictions, model predictions remain unfiltered. The plate model predicts zero geoid slope at old seafloor (because plate thickness becomes constant) while the half-space cooling model does not. Thus, the plate model appears to be successful (at least for old seafloor) to explain the near-zero geoid-slope observation, but this success is merely an artifact of treating model predictions and observations differently. In any case, extracting weak lithospheric signals from the geoid is not a trivial task, and using it further to constrain a cooling model is controversial at best.

Acknowledgments

This work was sponsored by the U.S. National Science Foundation under grant EAR-0449517. The authors thank Geoff Davies, Editor Claude Jaupart, and an anonymous reviewer for constructive comments.
References

